Sustainability in Numbers Delta Electronics (Thailand) Public Company Limited

Updated: March 2020

		C	overa	ge		2011	2015	2010		2012	
ndicators	Material Aspects	TH	SK	IN	Unit	2014	2015	2016	2017	2018	2019
GRI 302-1	Energy consumption within the organizatio	n									'
(1+2+3)	Total energy consumption within the				GJ	262,891.09	280,453.81	290,372.52	296,756.25	304,727.97	300,589.0
	organization		ľ	ľ	MWh	73,025.30	77,903.84	80,659.03	82,432.29	84,646.66	83,496.9
1					GJ	9,101.66	9,542.80	10,355.01	12,117.07	11,537.13	11,258.9
	Total fuel consumption within the organization	•	•	•	MWh	2,528.24	2,650.78	2,876.39	3,365.85	3,204.76	3,127.4
	- Gasoline	•	•	•	GJ	97.44	129.26	67.98	200.63	170.94	142.3
	- Diesel	•	•	•	GJ	3,772.95	2,728.94	2,800.48	4,263.82	4,254.61	3,766.0
	- LPG	•	•	•	GJ	6.17	3.69	6.02	5.23	-	4.4
2	- Natural Gas	•	•	•	GJ	5,225.10	6,680.91	7,480.53	7,647.40	7,111.58	7,346.1
			•		GJ	253,564.07	270,586.71	278,939.95	274,251.90	269,673.36	258,001.3
	Electricity and stream purchased for consumption			•	MWh	70,434.46	75,162.97	77,483.32	76,181.08	74,909.27	71,667.0
	- Electricity consumption	•	•	•	GJ	253,564.07	270,586.71	278,939.95	274,251.90	269,673.36	258,001.3
3	Renewable Energy Self-Generation				GJ	225.36	324.30	1,077.57	10,387.28	23,517.49	31,328.8
	Renewable Energy Sen-Generation	•	•	•	MWh	62.60	90.08	299.32	2,885.36	6,532.64	8,702.4
	- Solar energy	•	•	•	GJ	225.36	324.30	1,077.57	10,387.28	23,517.49	31,328.8
	Total Energy consumption intensity	•	•	•	MWh/MUSD	62.40	65.29	66.59	63.32	57.94	60.8
	Non-renewable consumption intensity	•	•	•	MWh/MUSD	62.34	65.22	66.35	61.10	53.47	54.4
	- Electricity intensity	•	•	•	MWh/MUSD	60.18	63.00	63.97	58.52	51.28	52.2
	- Total fuel consumption intensity	•	•	•	MWh/MUSD	2.16	2.22	2.37	2.59	2.19	2.2
	Renewable consumption intensity (Solar)	•	•	•	MWh/MUSD	0.05	0.08	0.25	2.22	4.47	6.3
RI 302-4	Reduction of energy consumption										
	Total Reduction of energy consumption within the organization				GJ	0	4.873.34	9.485.35	8,870.39	22,009.78	18,395.5

Environ	mental Performance												
In Parton	Market Assessed	Co	overa	ge	1124	0044	0045	0040	0047	0040	0040		
Indicators	Material Aspects	TH	SK	IN	Unit	2014	2015	2016	2017	2018	2019		
					MWh	0	1,353.71	2,634.82	2,464.00	6,113.83	5,109.86		
	- Reduction of electricity consumption	•			GJ	0	4.873.34	9.485.35	8,870.39	22.009.78	18.395.50		
	- Reduction of electricity consumption intensity (Saving energy intensity)	•			MWh/MUSD	0	1.36	2.52	2.21	4.91	4.24		
GRI303-1	Water withdrawal by source												
	Total volume of water withdrawn	•	•	•	Million cubic meters	0.2968	0.3427	0.3407	0.3722	0.3805	0.3568		
	- Surface water	•	•	•	Million cubic meters	0	0	0	0	0	0		
	- Ground water	•	•	•	Million cubic meters	0.0214	0.0189	0.0209	0.0221	0.0250	0.0246		
	- Rainwater	•	•	•	Million cubic meters	0	0	0	0	0.0034	0.0060		
	- Municipal water	•	•	•	Million cubic meters	0.2754	0.3238	0.3198	0.3501	0.3522	0.3262		
	Total Net fresh water consumption	•	Million	Million cubic meters	0.2968	0.3427	0.3407	0.3722	0.3772	0.3508			
	Total Water consumption Intensity	•	•	•	m³/MUSD	253.56	287.24	281.28	285.87	260.49	259.92		
	- Water withdrawn intensity (Ground + Municipal water)	•	•	•	m³/MUSD	253.56	287.24	281.28	285.87	258.17	255.54		
	- Rain water consumption intensity	•	•	•	m³/MUSD	0	0	0	0	2.31	4.37		
GRI 303-3	Water recycled and reused												
	Total volume of water recycled and reused by the organization.	•	•	•	Million cubic meters	0.0171	0.0160	0.0184	0.0289	0.0305	0.0915		
	- Water reused	•	•	•	Million cubic meters	0.0000	0.0001	0.0036	0.0130	0.0138	0.0171		
	- Water recycled	•	•	•	Million cubic meters	0.0171	0.0159	0.0148	0.0160	0.0166	0.0744		
	Total volume of water recycled and reused as a percentage of the total water withdrawal	•	•	•	%	5.76%	4.66%	5.41%	7.77%	8.01%	25.63%		
	- Total volume of water reused as a percentage of the total water withdrawal	•	•	•	%	0.00%	0.02%	1.06%	3.48%	3.64%	4.79%		
	- Total volume of water recycled as a percentage of the total water withdrawal	•	•	•	%	5.76%	4.64%	4.35%	4.29%	4.37%	20.84%		

		Co	overa	ge									
Indicators	Material Aspects	TH	SK	IN	Unit	2014	2015	2016	2017	2018	2019		
GRI 305-1	Direct (Scope 1) GHG emissions						'	'		'			
	Direct (Scope 1) GHG emissions	•	•1	•1	Tons CO2e	824.00	488.00	935.09	971.45	932.98	897.		
GRI 305-2	Energy indirect (Scope 2) GHG emissions												
	Energy indirect (Scope 2) GHG emissions	•	•1	•1	Tons CO2e	37,662.00	39,858.00	42,098.00	43,206.00	42,120.44	40,126.		
GRI 305-3	Other indirect (Scope 3) GHG emissions					, , , , , , , , , , , , , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	,	-,		
	Other indirect (Scope 3) GHG emissions	•	•1	•1	Tons CO2e	-	-	36,739.00	33,254.60	65,718.59	56,309		
GRI 305-4	GHG emissions intensity												
	GHG emissions (Scope 1 and Scope 2) intensity	•	•1	•1	Tons CO2e/MUSD	39.03	40.40	38.43	33.93	29.47	29		
	Other indirect (Scope 3) GHG emissions intensity	•	•1	•1	Tons CO2e/MUSD	0	0	32.81	25.54	44.99	41		
GRI 305-7	Nitrogen oxides (NOX), sulfur oxides (SOX), and other significant air emissions												
	NO _X (Slovakia's data was firstly consolidated in 2019)	•	• 2	•	Tons/year		0.0525	0	0.1289	0.0548	5.52		
	SO _X (Slovakia's data was firstly consolidated in 2019)	•	•2	•	Tons/year		0	0	0.0294	0.0142	0.05		
	CO (Slovakia's data was firstly consolidated in 2019)	•	•2	•	Tons/year		1.1201	0.5495	0.6723	3.6353	8.95		
	Tin (Sn) (Slovakia's data was firstly consolidated in 2019)	•	•2	•	Tons/year		0.5812	0.1982	1.2270	0.0528	0.30		
	Lead (Pb) (Slovakia's data was firstly consolidated in 2019)	•	•2	•	Tons/year		0.0451	0.0013	0.0015	0.0012	0.00		
	Xylene + Toluene intensity	•	•2	•	Tons/MUSD		0.0010	0.0009	0.0012	0.0021	0.00		
	Xylene + Toluene	•	• 2	•	Tons/year		0.9861	0.9414	1.4504	2.9066	1.19		
	Xylene (Slovakia's data was firstly consolidated in 2019)	•	•2	•	Tons/year		0.6955	0.5514	0.7142	1.1950	0.56		
	Toluene (Slovakia's data was firstly consolidated in 2019)	•	•2	•	Tons/year		0.2906	0.3900	0.7361	1.7116	0.63		
	Total Volatile Organic Compounds intensity (t VOCs)	•	•2	•	Tons/MUSD		N/A	N/A	N/A	N/A	0.06		
	Total Volatile Organic Compounds (t VOCs)	•	• 2	•	Tons/year		N/A	N/A	N/A	N/A	82		
	Total suspended particulate (TSP)	•	•2	•	Tons/year		26.96	20.46	22.79	18.81	27.		
GRI 306-1	Water discharge by quality and destinat	ion											
	Total volume of water discharges	•		•3	Million cubic	0.2504	0.2591						

		Co	vera	ge								
Indicators	Material Aspects	TH	SK	IN	Unit	2014	2015	2016	2017	2018	2019	
	- Water Discharged from domestic consumption	•	•	•3	Million cubic meters	0.2504	0.2591	0.2670	0.2806	0.2808	0.257	
	- Evaporation of water from Evaporative cooling systems (Calculate from Evaporative Cooling Systems)	•			Million cubic meters	N/A	N/A	N/A	N/A	N/A	0.059	
	Quality of the water discharge	,						'		1		
	- pH	•	• 4	•	-			7.81	7.82	7.82	7.	
	- BOD	•	• 4	•	mg/l			76.54	64.15	82.15	81.	
	- COD	•	• 4	•	mg/l			356.86	362.57	380.49	389.	
	- TDS	•	• 4	•	mg/l			N/A	N/A	N/A	1,260.	
	- TSS	•	• 4	•	mg/l			N/A	N/A	N/A	190.	
	- Oil and Grease	•	•4	•	mg/l			N/A	N/A	N/A	4.	
	Volumes of wastewater discharge by wastewater standard parameters											
	- pH	•	•	• 3	-			8.00	8.03	8.07	8.	
	- BOD loading	•	•	•3	Tons/year			27.87	27.66	32.66	32.	
	- COD loading	•	•	• 3	Tons/year			69.73	67.48	73.75	72.	
	- TDS loading	•	•	•3	Tons/year			N/A	N/A	N/A	161.	
	- TSS loading	•	•	• 3	Tons/year			N/A	N/A	N/A	12.	
	- Oil and Grease loading	•	•	• 3	Tons/year			N/A	N/A	N/A	1.	
GRI 306-2	Waste by type and disposal method											
	Total weight of waste generated	•	• 5	• 5	Tons/year			2,987.66	3,170.62	3,391.59	3,152.	
	Total waste Intensity	•	● 5	• 5	Tons/MUSD			2.47	2.44	2.32	2.	
	Production											
	Hazardous Waste	•	• 5	• 5	Tons/year			18.70	19.23	35.45	32.	
	- Reuse	•	• 5	• 5	Tons/year			0.00	0.00	0.00	0.	
	- Recycling	•	• 5	• 5	Tons/year			18.70	19.23	35.45	27	

		Co	overage		I I mit	2014					2040
ndicators	Material Aspects	TH	SK	IN	Unit	2014	2015	2016	2017	2018	2019
	- Composting	•	•5	• 5	Tons/year			0.00	0.00	0.00	2.:
	- Incineration (mass burn)	•	• 5	• 5	Tons/year			0.00	0.00	0.00	0.
	- Deep well injection	•	● 5	•5	Tons/year			0.00	0.00	0.00	0.
	- Landfill	•	• 5	• 5	Tons/year			0.00	0.00	0.00	0.
	- Other (to be specified by the organization) 6	•	● 5	•5	Tons/year			0.00	0.00	0.00	2
	Non-hazardous Waste	•	• 5	• 5	Tons/year			2749.708	2,906.27	3,123.52	2,858
	- Reuse	•	• 5	• 5	Tons/year			156.70	174.20	187.50	183
	- Recycling	•	• 5	• 5	Tons/year			2480.00	2644.10	2820.25	2587
	- Composting	•	● 5	• 5	Tons/year			0.00	0.00	0.00	0
	- Incineration (mass burn)	•	● 5	• 5	Tons/year			3.61	3.61	4.47	7
	- Deep well injection	•	•5	• 5	Tons/year			0.00	0.00	0.00	C
	- Landfill	•	•5	• 5	Tons/year			109.40	84.36	111.30	79
	- Other (to be specified by the organization) 6	•	• 5	•5	Tons/year			0.00	0.00	0.00	C
	Non-production	'									
	Hazardous Waste	•	• 5	• 5	Tons/year			0.12	0.16	0.18	9
	- Reuse	•	• 5	• 5	Tons/year			0.12	0.16	0.18	C
	- Recycling	•	● 5	• 5	Tons/year			0.00	0.00	0.00	C
	- Composting	•	• 5	• 5	Tons/year			0.00	0.00	0.00	C
	- Incineration (mass burn)	•	● 5	• 5	Tons/year			0.00	0.00	0.00	9
	- Deep well injection	•	• 5	• 5	Tons/year			0.00	0.00	0.00	C
	- Landfill	•	•5	• 5	Tons/year			0.00	0.00	0.00	C
	- Other (to be specified by the organization) 6	•	● 5	• 5	Tons/year			0.00	0.00	0.00	(
	Non-hazardous Waste	•	• 5	• 5	Tons/year			219.13	244.96	232.44	251
	- Reuse	•	• 5	• 5	Tons/year			98.56	112.30	131.42	159
	- Recycling	•	• 5	• 5	Tons/year			14.45	17.36	18.80	22
	- Composting	•	• 5	• 5	Tons/year			2.00	2.40	3.10	4
	- Incineration (mass burn)	•	• 5	• 5	Tons/year			2.12	0.90	1.12	,
	- Deep well injection	•	•5	• 5	Tons/year			0.00	0.00	0.00	(

Environ	Environmental Performance													
Indicators	Material Aspects	Co	vera	ge	− Unit	2014	2015	2016	2017	2018	2019			
III all Gallerie		TH	SK	IN			20:0	20.0		2010	20.0			
	- Landfill	•	• 5	• 5	Tons/year			102.00	112.00	78.00	64.41			
	- Other (to be specified by the organization) ⁶	•	• 5	● 5	Tons/year			0.00	0.00	0.00	0.00			
	Total Hazardous Waste Generated	•	● 5	• 5	Tons/year			18.82	19.39	35.63	42.41			
	Total waste used/recycled/ sold	•	• 5	• 5	Tons/year			2,768.53	2,967.35	3,193.60	2,980.95			
	Total waste disposed (Total waste generated - Total waste used/recycled/ sold)	•	• 5	• 5	Tons/year			219.13	203.27	197.99	171.83			

Note: From 2014-2019, the reporting of environmental performance was re-calculated to expand reporting scope covers DET's subsidiaries (India and Slovakia) for the full coverage of manufacturing (100 percentage coverage of manufacturing sites or 98 percentage of consolidated sales revenue). The scope of 2014-2019 reporting were re-stated as follows:

- The numerical data of Energy consumption within organization and subtopics were re-calculated covering Delta's subsidiaries data for the full coverage of manufacturing
- Reduction of energy consumption is covered on the sites in Thailand only.
- The numerical data of water withdrawal by source and water recycled and reused and subtopics were re-calculated covering Delta's subsidiaries data.
- 1The numerical data of Direct (Scope 1) GHG Emission: India and Slovakia's GHG inventory report 2017-2019 were publicly disclosed in 2018, the data of GHG emission scope 1 was added and recalculated for the full coverage of manufacturing sites.
- 1The numerical data of Energy indirect (Scope 2) GHG Emission: India and Slovakia's GHG inventory report 2017-2019 were publicly disclosed in 2018, the data of Energy indirect GHG emission scope 2 was added and recalculated for the full coverage of manufacturing sites.
- ¹The numerical data of other indirect (Scope 3) GHG Emission: India and Slovakia's GHG inventory report 2017-2019 were publicly disclosed in 2018, the data of other indirect GHG emission scope 3 was added and recalculated for the full coverage of manufacturing sites.
- The numerical data of Nitrogen oxides (NO_X), sulfur oxides (SO_X), and other significant air emissions were re-calculated covering Delta's subsidiaries data. ²Slovakia's data was firstly added in 2019.
- From 2015-2018, Delta had indicated VOCs emission as the aggregation of Xylene, Toluene and Isopropyl Alcohol using US. EPA Method 18. In 2019, Delta has measured total VOCs (t VOCs) to collect the actual total VOCs released from its operations.
- 3 India applies the zero water discharge process by installation their own Sewage Treatment Plants (STP) is to reduce wastewater economically. The discharge water is annually checked the water quality by Third-party (Eko Pro Engineers Pvt. Ltd. and Devansh Testing & Research Laboratory Pvt. Ltd.) according to EPA-1986 Schedule-VI Part-A, General Standards for Discharge of Effluents and recycled for domestic use (please see more detail in Delta Electronics (Thailand) Public Company Ltd.'s Sustainable Development Report 2020 page 67-70) and examine heavy metals concentration in water after treated. (The average results of water parameter for heavy metals from 2017- 2019 was demonstrated in Delta Thailand's Sustainability in numbers page 8)
- 4Slovakia's sewage water is transferred to the public sewerage system to be treated by third-party who provide wastewater treatment services for the local district. https://www.povs.sk/zakaznicka-zona/verejne-kanalizacie-a-kanalizacna-pripoika/. Thus the water quality indicators, Slovakia's site reports the highest permissible rate of wastewater discharged into public sewerage according to Slovakia's local water quality standard.
- Thailand sites, apart from water quality checking by Industrial Estate Authority of Thailand (IEAT), the discharged water is also examined heavy metals concentration annually by Third Party Specialist (Environmental Resource Development Co., Ltd.) to ensure and re-check the safety and quality of water before transfer to IEAT for treatment (The average results of water parameter for heavy metals from 2017- 2019 was demonstrated in Delta Thailand's Sustainability in numbers page 8)
- 5The numerical data of Waste by type and disposal method and subtopics were re-calculated 2016-2019 to cover Delta's subsidiaries (India and Slovakia).
- The previous reports in 2016 2018, the waste by type and disposal performance reports were not yet covered DET's subsidiaries (India and Slovakia) and its domestic waste. In 2019, DET reported waste by type and disposal method following reporting requirements of GRI 306-2 and covered DET's subsidiaries (India and Slovakia) therefore, the previous values of waste by type and disposal method from its subsidiaries were used for re-calculation from 2016-2018 and reported in 2019.
- Other (to be specified by the organization) defines accordingly to the National Council of the Slovak Republic has adopted the following Act no. 79/2015 Coll. in Waste Disposal, D9 Physico-chemical treatment resulting in final compounds or mixtures which are discarded by any of the operations numbered D1 to D12 (e.g. evaporation, drying, calcination). (see also: https://tinyurl.com/y453ejr8)

The average results of water parameter for heavy metals from 2017- 2019

Thailand

	Average r	esults o	f water parameter in 2017-	2019 (DE	T1,5,6)		
No.	PARAMETERS	Unit	Analysis Method	STD.	2017	2018	2019
1	pH	-	pH Meter	5.5-9.0	7.63	7.80	6.90
2	Temperature	۰C	Thermometer	45	31.10	29.37	32.00
3	Color (Original)*	ADMI	ADMI Method	600	pass	94.00	124.00
4	Odor	-	-	Pass	pass	pass	pass
5	BOD	mg/l	Azide Modification	500	36.67	121.67	85.33
6	COD	mg/l	Closed Reflux	750	79.82	248.33	150.33
7	Suspended Solids (SS)	mg/l	Dried at 103-105 oC	200	24.67	44.70	39.33
8	Total Dissolved Solids (TDS)	mg/l	Dried at 180 oC	3000	531.33	1,000.00	563.33
9	Total Kjeldahl Nitrogen (TKN)	mg/l	Kjeldahl Method	100	40.57	48.33	45.33
10	Grease & Oil	mg/l	Partition & Gravimetric	10	6.80	5.00	5.00
11	Sulfide	mg/l	Iodometric Method	1	0.46	0.46	0.36
12	Free Chlorine*	mg/l	DPD Colorimetric	1	0.19	0.10	0.10
13	Cyanide as HCN *	mg/l	Pyridine-Barbituric Acid	0.2	0.02	0.02	0.02
14	Formaldehyde *	mg/l	Colorimetric	1	0.00	0.00	0.00
15	Phenois Compound *	mg/l	Colorimetric	1	0.03	0.01	0.03
16	Surfactant	mg/l	Colorimetric	30	0.23	0.23	0.02
17	Fluoride (F) *	mg/l	SPADNS	5	0.27	0.56	0.88
18	Arsenic (As)*	mg/l	Inductively coupled plasma	0.25	0.00	0.00	0.00
19	Barium (Ba)*	mg/l	Inductively coupled plasma	1	0.05	0.06	0.33
20	Cadmium (Cd)*	mg/l	Inductively coupled plasma	0.03	0.00	0.00	0.01
21	Chromium (Cr+3)*	mg/l	Inductively coupled plasma	0.75	0.05	0.00	0.02
22	Chromium (Cr+6)*	mg/l	Inductively coupled plasma	0.25	0.01	0.01	0.00
23	Copper (Cu)*	mg/l	Inductively coupled plasma	2	0.02	0.11	0.12
24	Iron (Fe)*	mg/l	Inductively coupled plasma	10	0.90	0.37	0.82
25	Lead (Pb)*	mg/l	Inductively coupled plasma	0.2	0.00	0.01	0.01
26	Manganease (Mn)*	mg/l	Inductively coupled plasma	5	1.82	0.14	0.13
27	Mercury (Hg)*	mg/l	Inductively coupled plasma	0.005	0.00	0.00	0.00
28	Nickel (Ni)*	mg/l	Inductively coupled plasma	1	0.00	0.00	0.01
29	Selenium (Se)*	mg/l	Inductively coupled plasma	0.02	0.00	0.00	0.00
30	Silver (Ag)*	mg/l	Inductively coupled plasma	1	0.00	0.00	0.00
31	Zinc (Zn)*	mg/l	Inductively coupled plasma	5	0.03	0.19	0.55

India

No.	PARAMETERS	Unit	Analysis Method	STD.	2017	2018	2019
1	pH		IS: 3025 (P-11)	5.5-9.0	7.40	7.33	7.35
2	Temperature (°C)	°C	IS: 3025 (P-9)	.54	23.50	25.00	26.50
3	Eff. TDS	(mg/l)	IS: 3025 (P-16)		683.00	586.50	660.00
4	Avg. Eff. TSS/SS	(mg/l)	IS: 3025 (P-17)	100	40.00	36.00	21.50
5	Grease & Oil	(mg/l)	IS: 3025 (P-39)	10	4.00	4.00	4.00
6	Eff. COD	(mg/l)	IS: 3025 (P-58)	250	60.25	53.70	53.10
7	Eff. BOD	(mg/l)	IS: 3025 (P-44)	30	22.00	20.50	15.00
8	Total Nitrogen (as N)	(mg/l)	IS: 3025 (P-34)	10	2.81	2.80	3.31
9	Manganease (Mn)	(mg/l)	IS: 3025 (P-59)	2	0.005	0.005	0.005
10	Sulfide	(mg/l)	IS: 3025 (P-29)	2	1.000	1.000	1.000
11	Fluoride (F)	(mg/l)	APHA 4500-F D	2	0.780	0.650	0.680
12	Ammonical Nitrogen as NH3-N)	(mg/l)	APHA 4500 NH3 C	50	6.230	4.935	2.735
13	Copper (Cu)	(mg/l)	APHA 3125 B	3	0.008	0.005	0.953
14	Zinc (Zn)	(mg/l)	IS: 3025 (P-49)	5	0.790	0.640	1.295
15	Phenois Compound as C6H5OH	(mg/l)	IS: 3025 (P-43)	1	0.001	0.001	0.001
16	Total Residual Chlorine	(mg/l)	IS: 3025 (P-26)	1	0.200	0.200	0.200
17	Arsenic (As)	(mg/l)	APHA 3125 B	0.2	0.005	0.005	0.005
18	Cadmium (Cd)	(mg/l)	APHA 3125 B	2	0.003	0.003	0.163
19	Vanadium (as V)	(mg/l)	APHA 3125 B	0.2	0.010	0.010	0.010
20	Chromium (Cr+6)	(mg/l)	APHA 3125 B	0.1	0.028	0.050	0.035
21	Chromium (Cr+3)	(mg/l)	APHA 3125 B	2	0.005	0.005	0.005
22	Lead (Pb)	(mg/l)	APHA 3125 B	0.1	0.028	0.028	0.005
23	Selenium (Se)	(mg/l)	APHA 3125 B	0.05	0.005	0.005	0.005
24	Mercurry (Hg)	(mg/l)	EKO/CHEM/SOP-ICPMS/W-01	0.01	0.001	0.001	0.001
25	Phosphate (as PO4)	(mg/l)	IS: 3025 (P-31)	5	1.720	1.750	1.140
26	TKN	(mg/l)	APHA 4500 N	100	4.800	4.310	4.180
27	Cyanide as HCN	(mg/l)	APHA 4500 CN-K	0.2	Absent	Absent	Absent
28	Nikel (Ni)	(mg/l)	APHA 3125 B	3	0.008	0.005	0.513
29	Iron (Fe)	(mg/l)	APHA 3125 B	3	0.480	0.370	0.410

Sustainability development Office

Delta Electronics (Thailand) Public Company Limited

Headquarter: 909 Soi 9 Moo 4 Bangpoo Industrial Estate (EPZ.)
Pattana 1 Rd., T. Phraksa, A. Muang
Samutprakarn 10280

Website: www.deltathailand.com Tel: +66 2709 2800 ext 6395, 6397 e-mail: det.sd@deltathailand.com

